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The conditions of occurrence of extremes on the solidus and liquidus curves in a binary isobaric
phase diagram are specified. The solid and liquid phases are regarded as regular solutions in
equilibrium. Two simplifying assumptions are made: (i) the Gibbs function of melting of the pure
components is a linear function of temperature; (ii) the two phases in equilibrium are regular
solutions with a temperature-dependent regular solution parameter. The conditions of occurrence of
inflexion points on the solidus and/or liquidus curves are obtained by modelling.

Detailed knowledge of the dependence of the shape of solidus and liquidus curves on
the values of the regular solution parameters for the two phases in equilibrium is of
crucial importance for phase diagram calculations on the thermodynamic basis. There-
fore, attempts were made to gain more information about the correlation of the shape of
the solidus and liquidus curves with the regular solution parameters. Phase diagram
calculations are based on the condition of identical chemical potentials of the compo-
nents in all phases in equilibrium1. In particular, the equations characterizing the hete-
rogeneous equilibrium in an ideal binary system between the solid (s) and liquid (l)
phases (Eqs (1) and (2), respectively) can be written for one mole of solution as:

Gi
0(s) + RT ln (xi

(s)) = Gi
0(l) + RT ln (xi

(l))  , (1)

where R and T have their usual meaning and xi
(p) is the molar fraction of component  i

(i = 1, 2 for phase p = s, l, respectively). The standard molar Gibbs function Gi
0(p)

(index m is omitted) of component i in phase p is expressed with respect to the standard
state of the pure components at the temperature of solution and in the state of solu-
tion2,3. Equation (1) can be modified to the form
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∆Gfi = ∆Hfi − T∆Sfi = RT ln (xi
(s)/xi

(l))  , (2)

where ∆Gfi is the Gibbs function of fusion of pure component i and ∆Hfi and ∆Sfi denote
the molar enthalpy and molar entropy of fusion of component i, respectively, neglect-
ing their temperature dependence. The system of Eqs (1) for the case of an ideal two-
component solution (i = 1, 2; x2 = 1 – x1) can be solved algebraically4:

x2
(s) = (Q − 1)/(Q − N)  ,               x2

(l) = N(Q − 1)/(Q − N)  , (3)

where Q = exp (−∆Gf1/RT) ,     N = exp (−∆Gf2/RT) .
In this case no extreme appears on the solidus or liquidus curve in the phase diagram.
In the phases of a non-ideal solution, the excess Gibbs function GE should be included
and generally regarded as temperature and composition dependent. The simplest math-
ematical description of this concentration dependence, using the statistical back-
ground5, is the regular solution model proposed by Hildebrand6:

GE(p)/RT = w(p)x(p)(1 − x(p)) (4)

for phase p = s, l. In our previous paper7 dealing with the phase equilibrium between
two regular binary phases, parameter w(p) in Eq. (4) was supposed to be temperature and
composition independent. The following conclusion emerged from the discussion in
ref.7: an extreme occurs on the solidus and liquidus curves if:

−(Tf2/∆Hf2) < A < (Tf1/∆Hf1)  , (5)

where A = (Tf2 − Tf1)/(w(l) − w(s)) and Tf1, Tf2 are the temperatures of melting of the pure
components 1 and 2, respectively. In the present paper, the previous considerations7 are
extended by taking into account the temperature dependence of the regular solution
parameters w(p). This means that the enthalpic wH

(p) and entropic wS
(p) terms (concentra-

tion and temperature independent) of the regular solution parameter for phase p are
included in Eq. (4):

w(p) = (wH
(p) − wS

(p)T)  . (6)
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The aim of this paper is to show how the shapes of the liquids and solidus curves
T = T(l)(x(l)) and T = T(s)(x(s)) in a binary phase diagram depend on the values of the
parameters wH

(p) and wS
(p) in the two phases (s and l) in equilibrium. (The considerations

applied here to the solid and liquid phases are also valid for any other phases obeying Eqs
(4) and (6).)

THEORY

Equations for the Phase Equilibrium Between Two Regular Binary Phases 
Including Temperature-Dependent Regular Solution Paramaters

From the two assumptions made in our previous paper7, only the first, viz. that the
Gibbs function of melting of the pure components is a linear function of temperature
(2), was retained. The second assumption, viz. that the concentration dependence of the
excess Gibbs function of an individual phase obeys Eq. (4), is modified in this work,
namely so that Eq. (6) is included. The phase equilibrium equations (2) can be then
rewritten8 in the form (x = x2):

ln [(1 − x(l))/(1 − x(s))] − (∆Hf1/R) (1/Tf1 − 1/T) − [(wH
(s) − wS

(s)T)/RT] (x(s))2 + (7)

+ [(wH
(l) − wS

(l)T)/RT] (x(l))2 = 0

and similarly for component 2 (with subscript 2 instead of 1, and (1 – x(p)) instead of
x(p)). It follows from the Gibbs phase rule that the compositions of the two phases at the
temperature of extreme are identical (x(s) = x(l) = xe at T = Te). By multiplying both equa-
tions by RTe ≠ 0 and rearranging, we get for the equilibrium in the point of extreme:

(−∆Hf1/Tf1)Te + (∆Hf1) + (xe)2 (−wH
(s) + wS

(s)Te + wH
(l) − wS

(l)Te) = 0  . (8)

Denoting WH = wH
(l) − wH

(s) and WS = wS
(l) − wS

(s) and rearranging Eq. (8) we obtain:

∆Hf1 + Te[(−∆Hf1 − Tf1WS(xe)2)/Tf1] + (xe)2WH = 0  . (9)

Multiplication of Eq. (9) by [Tf1/–∆Hf1 –Tf1WS(xe)
2] ≠ 0 gives

(∆Hf1Tf1 + (xe)2WHTf1)/(−∆Hf1 − Tf1WS(xe)2) + Te = 0  . (10)
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Equations similar to (8)–(10) are obtained for component 2 by using subscript 2 instead
of 1 and (1 – xe) instead of xe. By eliminating Te we get:

[(∆Hf1Tf1 + (xe)2WHTf1)/(−∆Hf1 − Tf1WS(xe)2)] + 

[−(∆Hf2Tf2 − (1 − xe)2WHTf2)/(−∆Hf2 − Tf2WS(1 − xe)2)] = 0  . (11)

As the next step, multiplication of this equation by

 [−∆Hf1 − Tf1WS(xe)2] [−∆Hf2 − Tf2WS(1 − xe)2] ≠ 0  ,

rearrangement and multiplication by 1/[∆Hf1∆Hf2(WH − WSTf1)] ≠ 0 finaly yields:

[(Tf1/∆Hf1) (WH − WSTf2)/(WH − WSTf1) − (Tf2/∆Hf2)](xe)2 + 

+ 2 (Tf2/∆Hf2)xe − (Tf2 − Tf1)/(WH − WSTf1) − (Tf2/∆Hf2) = 0  . (12)

Denoting

K = (Tf2/∆Hf2)

L = (Tf1/∆Hf1) (WH − WSTf2)/(WH − WSTf1)

M = (Tf2 − Tf1)/(WH − WSTf2)  , (13)

we obtain the solution of Eq. (12) in the form

(xe)1,2 = [K ± (KL + M(L −K))1/2]/(K − L)  . (14)

An extreme occurs on the phase equilibrium lines (0 < xe < 1) if

− K < M < L (15)

for K > 0 and L > 0.
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For WS = 0 the conditions expressed by Eqs (13)–(15) are identical with those ex-
pressed by Eq. (5) in our previous work7. In the case of inflexion points the explicit
expressions for T = T(l)(x(l)) and for T = T(s)(x(s)), fulfilling the conditions
(d2T(l)/dx(l)2) = 0 or (d2T(s)/dx(s)2) = 0 are complicated. Therefore, thermodynamic mod-
elling was applied to find the parameter values at which the inflexion points appear.

Modelling the Shape of the Solidus and Liquidus Curves Taking into Account the
Temperature Dependence of Regular Solution Parameters

Computer modelling offers a complex view upon the influence of the regular solution
parameters of the shape of the solidus and liquidus curves. The equilibrium composi-
tions x(s) and x(l) for a binary system 1–2 at chosen temperatures were calculated by Eq. (7)
by means of the programme DIAGRAM (ref.9). Values for the pure components (the
enthalpy of fusion at the melting point) and for solutions in equilibrium (coefficients of
regular solutions) were entered as the input data. The shapes of the solidus and liquidus
curves were observed on the screen.

FIG. 1
Fields of occurrence of extremes on isobaric phase diagrams in dependence on the values of WH and
WS parameters. a Fe–Cr system in the solidus–liquidus region. Thermodynamic parameters: HfFe

0  =
14 545 J mol–1, TfFe = 1 811 K, HfCr

0  = 18 409 J mol–1, TfCr = 2 180 K. The region of equilibrium of
three phases (eutectics) lies to the right from the line WS = (8 . 10–4 WH – 19) and is not shown in
Fig. 1a. 1 maximum, 2 without extreme, 3 inflexion point on the liquidus, 4 inflexion point on the
liquidus and on the solidus, 5 inflexion point on the solidus, 6 minimum. b Hypothetical system of
components 1 and 2 in the solidus–liquidus region. Thermodynamic parameters: Hfl

0  = 10 000 J mol–1,
Tf1 = 500 K, Hf2

0  = 15 000 J mol–1, Tf2 = 800 K. 1 maximum, 2 inflexion point on the solidus, 3 without
extreme, 4 minimum, 5 equilibrium of three phases (eutectics)
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RESULTS AND DISCUSSION

A simple computer program was written8 for the solution of Eq. (12), i.e. Eq. (14). A
range of WH and WS  values was chosen, and the program marked pairs of WH and WS

values for which Eq. (15) was satisfied. This enabled us to show graphically the region
of WH and WS  values for which some extreme exists. Examples of results of this proce-
dure are shown in Figs 1a and 1b. Regions where inflexion points occur were obtained
by modelling and are also shown in the figures. The results of modelling are important
for assessments of thermodynamic and phase data, demonstrating the influence of changes
in thermodynamic parameters on the shape of the solidus and liquidus curves in a phase
diagram. The same type of solidus and liquidus curves in a phase diagram can be found
for various values of the regular solution parameters. In contrast to what is commonly
believed10,2, liquidus and solidus curves without extremes also appear if the WH and WS

quantities possess relatively large values of the same sign.
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